Note

N.m.r. data on ketohexose nucleosides

FRANÇOISE LECLERCQ AND KOSTAS ANTONAKIS

Institut de Recherches Scientifiques sur le Cancer du C.N.R.S., 94802 Villejuif (France)
(Received June 9th 1987; accepted for publication, February 8th, 1988)

The biological importance of ketohexose nucleosides has been emphasized in the past decade¹⁻⁴ and a relationship between the structure and the cytotoxic activity has been observed for several cell lines³, which suggests that the presence of C=C-C=O or -C-C-C=O in the sugar moiety is indispensable. On the other

hand, the activity appears to be independent of the anomeric configuration, the axial or equatorial position of the heterocyclic base, and the L or D configuration of the sugar. The mechanism of action of these compounds is still unclear, although they are known to inhibit DNA, RNA, and protein synthesis⁵ and to react with sulfhydryl compounds⁶. Moreover, the absence of a genotoxic effect⁴ makes these compounds of particular interest and indicates that they act by a mechanism that is probably different from that associated with alkylating or intercalating antitumor drugs.

We now report ¹³C-n.m.r. data on various ketohexose and unsaturated ketohexose nucleosides together with ¹H-n.m.r. data which supplement earlier studies (see Tables I and II).

A keto group in a sugar moiety, as in 7-(6-deoxy-3,4-O-isopropylidene- β -L-lyxo-hexopyranosyl-2-ulose)theophylline⁷ (3) and in 1-(6-deoxy-3,4-O-isopropylidene- β -L-lyxo-hexopyranosyl-2-ulose)thymine⁸ (4), deshields the neighboring protons. Moreover, the 1 H-n.m.r. data for the precursors 7-(6-deoxy-3,4-O-isopropylidene- β -L-galactopyranosyl)theophylline⁷ (1) and 1-(6-deoxy-3,4-O-isopropylidene- β -L-galactopyranosyl)theophylline⁸ (2) indicate⁹⁻¹¹ a conformation close to 1S_3 , caused by the dioxolane ring which takes up a 3T_4 conformation 11 . Oxidation of HO-2' in 1 or 2 affects the 1,3-dioxolane ring so that $J_{4',5'}$ becomes <0.5 Hz. On the other hand, repulsion between the O-2 of the thymine moiety and the carbonyl oxygen of the sugar moiety causes distortions as shown by the smaller value of $J_{3',4'}$. Hence, the conformations of 3 and 4 are close to 3S_1 . As expected, C-2' in 3 and 4 is markedly deshielded (110–120 p.p.m.) but, whereas H-1' is

TABLEI

N.M.R. DATA⁴ FOR SATURATED KETOHEXOSE NUCLEOSIDES AND THE PARENT NUCLEOSIDES

6.75 $H.2'$ $I_{f.f.}$ $H.3'$ $I_{f.f.}$ $H.4'$ $I_{f.f.}$ $H.5'$ $I_{f.f.}$ <t< th=""><th></th><th>H-N.m.r.</th><th>r. data</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		H-N.m.r.	r. data										
6.75 3.9 5.05 6.7 6.80 6.63 10.3 7.79 1.3 5.13 6.8 6.61 6.61 1.3 7.09 0 4.63 6.8 6.61 1.5 7.33 7.50 3.0 4.76 7.0 6.92 1.7 7.40 10.2 6.31 4.73 5.3 2.6 6.92 1.5 7.35 10.2 6.31 4.75 5.3 2.6 6.92 1.5 7.35 1.5 7.35 4.65 4.6 4.0 6.92 1.5 7.35 1.2 4.41 5.3 2.6 7.05 1.5 7.35 1.6 4.41 6.6 7.05 1.5 1.5 1.6 1.6 6.6 80.07 1.7 1.6 1.2 1.6 1.6 7.5 1.4 6.6 80.07 1.2 1.6 1.2 1.4 1.6 7.5 1.4 1.5 1.6 80.07 1.2 1.6 1.6 1.6 <t< th=""><th>Beautiful Co. 11 Linguisting</th><th>H.J.</th><th>J'.2</th><th>H-2′</th><th>J₂, 3</th><th>H-3′</th><th>3</th><th>H-4′</th><th>J4.51</th><th>H-5′</th><th>J5,6'a</th><th>Js.6'c</th><th>,9-Н</th></t<>	Beautiful Co. 11 Linguisting	H.J.	J'.2	H-2′	J ₂ , 3	H-3′	3	H-4′	J4.51	H-5′	J5,6'a	Js.6'c	,9-Н
6.80 6.80	ŝ	6.75						6.72	3.9	5.05	6.3	_	1.51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ô	08.9						6.57	1.3	5.13	8.9		1.53
6.61 4.76 4.76 4.76 7.0 6.8 1.5 7.33 4.73 5.3 2.6 6.96 1.7 7.40 4.65 4.6 4.6 4.6 4.0 6.92 1.7 7.35 10.2 6.31 4.65 4.6 4.6 4.0 7.05 1.1	42	6.63				6.28	10.3	7.09	0	4.63	9.9		1.49
6.8 1.6 7.33 6.8 4.73 5.3 2.6 6.96 1.7 7.40 10.2 6.31 4.65 4.6 4.6 4.0 6.92 1.5 7.35 7.35 7.35 7.8 4.6 4.6 4.6 4.0 6.92 1.5 7.05 1.0 10.2 6.31 4.41 6.6 5.8 7.05 2.1 7.05 1.0 1.0 1.0 1.0 1.0 6.6 7.0 1.0 6.6 7.0 1	%	19.9						7.50	3.0	4.76	7.(_	1.59
6.96 1.7 7.40 6.92 1.5 7.35 7.05 2.1 7.00 10.2 6.31 $^{4.62}$ 4.6 4.6 4.6 5.8 7.05 2.1 7.00 10.2 6.31 6.6 13 C-N,m.r. data 13 C-N,m.r. data 13 C-S,m.r. data 14 C-C-S,m.r. data </td <td>10′</td> <td>8.9</td> <td>9.1</td> <td>7.33</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.73</td> <td></td> <td></td> <td>4.53</td>	10′	8.9	9.1	7.33						4.73			4.53
6.92 1.5 7.35 4.62 5.8 7.05 2.1 7.00 10.2 6.31 4.41 6.6 BC-N.m.r. data C-I' $I_{CI,IHI'}$ $C-2'$ $I_{CS,HS'}$ $C-4'$ $I_{CA',H4'}$ $C-5'$ $I_{CS,HS'}$ $C-6'$ 80.07 172 182.7 142.1 138.4 166 70.2 145 20.3 80.11 155 182.6 142.2 139.1 166 70.5 145 20.2 80.11 155 186.6 125.4 171 153.1 166 70.5 145 20.2 79.95 162 180.8 118.3 153.0 164 70.14 153 18.1 78.8 164 130.7 170 145.3 185.5 146 61.9 79.0 163 164 70.14 153 18.1 79.0 163 164 70.14 153 18.1 79.0 163 145.6 185.2 146 61.9 79.0	911	96.9	1.7	7.40						4.65			4.09
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	126	6.92	1.5	7.35						4.62			1.51
"BC-N.m.r. data C-I' $J_{CP,HH'}$ $C-2'$ $J_{CP,HZ'}$ $C-3'$ $J_{CS,HZ'}$ $C-6'$ 80.07 172 182.7 142.1 138.4 166 70.2 145 20.3 80.11 155 182.6 142.2 139.1 166 70.5 145 20.2 80.11 155 186.6 125.4 171 153.1 166 70.5 145 20.2 79.5 162 180.8 118.3 183.1 163 68.9 148 18.1 78.8 164 130.7 170 145.3 185.5 146 61.9 79.0 163 141 144.4 162 145.6 188.3 76.9 143 15.2 79.2 167 145.8 168 130 170 194.0 79.2 145 15.2	136	7.05	2.1	7.00	10.2	6.31				4.41	9.9		1.39
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		¹³ C-N.m.											
172 182.7 142.1 138.4 166 70.2 145 20.3 155 182.6 142.2 139.1 166 70.5 145 20.2 163 186.6 125.4 171 153.1 163 68.9 148 18.2 164 180.8 118.3 153.0 164 70.14 153 18.1 164 130.7 170 145.3 185.5 78.5 146 61.9 141 134.4 162 145.6 188.3 76.9 143 15.2 163 134.1 161 145.6 188.3 76.9 145 15.2 167 143.8 168 130 170 194.0 79.2 145 15.2		C-I'	J _{CF,HF}	C-2'	J _{C,2',H2'}	C-3'	J _{C.3',H-3'}	C-4′	J _{C-4',H-4'}	C-5′	J _{C-5'.H-5'}	,9-O	J.c.6',11.6'
80.11 155 182.6 142.2 139.1 166 70.5 145 20.2 79.95 163 186.6 125.4 171 153.1 163 68.9 148 18.2 80.25 162 180.8 118.3 153.0 164 70.14 153 18.1 78.8 164 130.7 170 145.3 185.5 78.5 146 61.9 80.83 141 134.4 162 145.6 188.3 76.9 143 15.2 79.0 163 167 143.8 168 130 170 194.0 79.2 145 15.2	Ş	80.07	172	182.7		142.1		138.4	166	70.2	145	20.3	145
79.95 163 186.6 125.4 171 153.1 163 68.9 148 18.2 80.25 162 180.8 118.3 153.0 164 70.14 153 18.1 78.8 164 130.7 170 145.3 185.5 78.5 146 61.9 80.83 141 134.4 162 145.6 187.0 78.8 145 61.2 79.0 163 134.1 161 145.6 188.3 76.9 143 15.2 79.26 167 143.8 168 130 170 194.0 79.2 145 15.2	"9	80.11	155	182.6		142.2		139.1	166	70.5	145	20.2	130
80.25 162 180.8 118.3 153.0 164 70.14 153 18.1 78.8 164 130.7 170 145.3 185.5 78.5 146 61.9 80.83 141 134.4 162 145.6 187.0 78.8 145 61.2 79.0 163 134.1 161 145.6 188.3 76.9 143 15.2 79.26 167 143.8 168 130 170 194.0 79.2 145 15.2	10	79.95	163	186.6		125.4	171	153.1	163	6.89	148	18.2	130
78.8 164 130.7 170 145.3 185.5 78.5 146 61.9 80.83 141 134.4 162 145.6 187.0 78.8 145 61.2 79.0 163 134.1 161 145.6 188.3 76.9 143 15.2 79.26 167 143.8 168 130 170 194.0 79.2 145 15.2	%	80.25	162	180.8		118.3		153.0	164	70.14	153	18.1	130
80.83 141 134.4 162 145.6 187.0 78.8 145 61.2 79.0 163 134.1 161 145.6 188.3 76.9 143 15.2 79.26 167 143.8 168 130 170 194.0 79.2 145 15.2	10¢	78.8	164	130.7	170	145.3		185.5		78.5	146	61.9	150, 139
79.0 163 134.1 161 145.6 188.3 76.9 143 15.2 79.26 167 143.8 168 130 170 194.0 79.2 145 15.2	911	80.83	141	134.4	162	145.6		187.0		78.8	145	61.2	150, 140
79.26 167 143.8 168 130 170 194.0 79.2 145 15.2	120	79.0	163	134.1	191	145.6		188.3		6.97	143	15.2	130
	130	79.26	167	143.8	168	130	07.1	194.0		79.2	145	15.2	130

 $^a\delta$ in p.p.m., J in Hz. bSolution in CDCl3. 'Solution in $C_6D_6.$

FABLE II

N.M.R. DATA" FOR UNSATURATED KETONUCLEOSIDES

	¹ H-N.m.r. data	r. data										
	H-I'	$J_{I',2'}$	Н-2′	J _{2',3'}	H-3′	J _{3',4'}	H-4′	J4',5'	H-5′	J5',6'a	J _{5',6'b}	,9-H
<u>4</u>	5.87	7.3	4.17	6.0	4.30	0.9	3.99	6.0	3.56	9.9		1.40
æ	69.9				4.77	5.4	4.55	0	4.49	9.9	,c	1.47
5 p	5.60	8.4	4.69	5.8	4.33	5.9	4.12	9.9	3.83	7.3	•	1.38
4	6.21				4.69	5.5	4.49	0	4.4	6.5	10	1.45
ģ	4.98	11.0	4.67	11.9	4.39	!			4.27	8.5	5.2	3.31-3.58
	¹³ C-N.m.r.	.r. data					!					
	C·I′	J _{C-I',H-I'}	C-2'	J _{C-2} ',H-2'	C-3'	Ј _{СЗ',НЗ'}	C-4'	J _{C-4',H-4'}	C-5′	Ј _{С.} з.,н.s [.]	C-6′	J _{C-6',H-6'}
116	85.2	158	78.6	161	75.6	155	72.6	148	71.9	126	16.3	129
ĕ	9.08	169	197.2		82.9	163	77.6	150	71.8	139	16.0	128
ş,	85.2	158	78.9	150	76.1	148	71.7	142	71.4	145	16.4	126
4	82.0	149	198.8		80.4	155	79.8	151	72.1	140	16.5	130
g _b	83.7	141	79.4	140	139.3	180	9.661		84.2	161	61.7	150, 140
									-			

 $^a\delta$ in p.p.m., J in Hz. $^b\mathrm{Solution}$ in $\mathrm{CDCl}_3.$ $^c\mathrm{Solution}$ in $\mathrm{C}_6\mathrm{D}_6.$

220 NOTE

$$Me_{2}C-O$$

$$1 R = Th$$

$$2 R = Thy$$

$$4 R = Thy$$

$$6 R = 6CIP$$

$$7 R^{1} = H$$

$$8 R^{1} = Br$$

$$10 R^{1} = OBz, R^{2} = OH$$

$$12 R^{1} = OBz, R^{2} = H$$

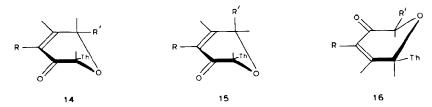
$$10 R^{1} = OBz, R^{2} = H$$

$$11 R^{1} = OBz, R^{2} = H$$

$$11 R^{1} = OBz, R^{2} = H$$

$$11 R^{1} = OBz, R^{2} = H$$

deshielded, C-1' is not affected. In 7-(2,3-di-O-benzyl-6-O-trityl- β -D-xylo-hexopyranosyl-4-ulose)theophylline¹² (9), where the carbonyl group is at position 4', C-3' and C-5' are markly deshielded and there is an increase in the ${}^2J_{\rm C,H}$ values. Therefore, the presence of a heterocyclic base α to a keto group blocks the influence of the carbonyl group on the anomeric carbon.


Unsaturated ketonucleosides have half-chair conformations ¹³ and each of the compounds studied had the bulky theophylline group equatorial ¹⁴. In 7-(3-O-acetyl-4,6-dideoxy- β -L-glycero-hex-3-enopyranosyl-2-ulose) theophylline ¹⁵ (**5**) and 9-(3-O-acetyl-4,6-dideoxy- β -L-glycero-hex-3-enopyranosyl-2-ulose)-6-chloropurine ¹⁶ (**6**), which are both β -L-2'-keto compounds, the purine base and the 5'-substituent are equatorial and conformation **14** is adopted. Long-range coupling ($J_{1',5'}$ 1.5 Hz) was observed for **5** but not for **6**. In addition, C-1' is more deshielded and $J_{C-1',H-1'}$ is smaller in **6** than in **5**, probably because of the higher acidity of the 6-chloropurine moiety.

Conformation 15, where the 5'-substituent is axial, can be assigned to 7-(3,4,6-trideoxy- α -L-glycero-hex-3-enopyranosyl-2-ulose)theophylline¹⁷ (7) and 7-(3-bromo-3,4,6-trideoxy- α -L-glycero-hex-3-enopyranosyl-2-ulose)theophylline¹⁷ (8), which are both α -L compounds. No long-range coupling $(J_{1'.5'})$ was observed for these compounds or any allylic coupling for 7.

7-(3,6-Di-O-acetyl-2-deoxy- β -D-glycero-hex-2-enopyranosyl-4-ulose)theophylline¹⁸ (10), 7-(3-O-benzoyl-2-deoxy- β -D-glycero-hex-2-enopyranosyl-4-ulose)theophylline² (11), and 7-(3-O-benzoyl-2,6-dideoxy- β -D-glycero-hex-2-enopyrano-

NOTE 221

syl-4-ulose)theophylline² (**12**) are 4'-keto compounds derived from β -D-glucopyranosyltheophylline. They adopt conformation **16**. This conformation is also adopted by 7-(2,3,6-trideoxy- α -L-glycero-hex-2-enopyranosyl-4-ulose)theophylline¹⁹ (**13**). The following allylic coupling constants ($J_{2',5'}$) were determined: **10** 1.7, **11** 1.8, **12** 1.5, and **13** 1.7 Hz. A $J_{1',3'}$ value of 2.1 Hz was also observed for **13**.

EXPERIMENTAL

 1 H-N.m.r. (300 MHz) and 13 C-n.m.r. (75 MHz) spectra (internal Me₄Si) were recorded at room temperature with a Bruker 300 MSL spectrometer. For 1 H-n.m.r. spectra, the acquisition time was 2 s and the pulse width was 40°. For 1 H-decoupled 13 C-n.m.r. spectra, the acquisition time was 1 s and the pulse width was 20°. The gated-decoupling technique was used for the measurement of 13 C- 1 H couplings. When necessary, assignments of signals were confirmed using heteronuclear-correlated 2D spectrometry (XHCORD pulse sequence). The precisions estimated for δ and J values were 1 H, 0.02 p.p.m. and 0.2 Hz; 13 C, 0.2 p.p.m. and 1 Hz.

ACKNOWLEDGMENT

We thank the Association pour la Recherche Sur le Cancer (ARC) for financial support.

REFERENCES

- 1 K. Antonakis and I. Chouroulinkov, Biochem. Pharmacol., 23 (1974) 2095–2100.
- 2 K. Antonakis, T. Halmos, J. Bach, and I. Chouroulinkov, Eur. J. Med. Chem. Chim. Therapeut., 15 (1980) 237–240.
- 3 M. A. Alaoui-Jamali, M. J. Arvor-Egron, M. Bessodes, K. Antonakis, and I. Chourou-Linkov, Eur. J. Med. Chem., 22 (1987) 305–310.
- 4 M. A. Alaoui-Jamali, C. Lasne, K. Antonakis, and I. Chouroulinkov, *Mutagenesis*, 6 (1986) 411–417.
- 5 C. Aujard, Y. Moule, E. Chany-Morel, and K. Antonakis, *Biochem. Pharmacol.*, 27 (1978) 1037–1042.
- 6 T. HALMOS, A. CARDON, AND K. ANTONAKIS, Chem.-Biol. Interactions, 46 (1983) 11-29.
- 7 K. Antonakis, Carbohydr. Res., 24 (1972) 229-234.
- 8 J. HERSCOVICI, M. J. EGRON, AND K. ANTONAKIS, J. Chem. Soc., Perkin Trans 1, (1982) 1967–1973.
- 9 B. COXON, Methods Carbohydr. Chem., 6 (1972) 513-539.
- 10 B. COXON, Carbohydr. Res., 13 (1970) 321-330.
- 11 J. TRONCHET, F. BARBALAT-REY, AND J. CHALET, Carbohydr. Res., 30 (1973) 229-238.
- 12 T. HALMOS AND K. ANTONAKIS, unpublished results.
- 13 E. F. L. J. ANET. Carbohydr. Res., 1 (1966) 348-356.
- 14 K. Antonakis, Adv. Carbohydr. Chem. Biochem., 42 (1984) 227-264.

222 NOTE

- 15 K. Antonakis and M. J. Arvor-Egron, Carbohydr. Res., 27 (1973) 468–470.
- 16 K. ANTONAKIS AND M. BESSODES, Carbohydr. Res., 30 (1973) 192-195.
- 17 J. HERSCOVICI AND K. ANTONAKIS, J. Chem. Soc., Perkin Trans 1, (1979) 2682–2686.
- 18 T. HALMOS AND K. ANTONAKIS, Carbohydr. Res., 68 (1979) 61-69.
- 19 J. Herscovici, J. M. Argoullon, M. J. Egron. and K. Antonakis, *Carbohydr. Res.*, 112 (1983) 301–306.